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1.Introduction
Since the release of the Bitcoin whitepaper in 2008, the idea of blockchain has gained global recognition. 
Despite the increasing awareness of decentralized money and applications, design constraints have 
hindered Bitcoin's primary goals. Originally intended as a peer-to-peer payment system to facilitate 
transactions without intermediaries like banks, Bitcoin's popularity exposed its limitations, notably a 
throughput of approximately 7 transactions per second (TPS) and high transaction costs.

In 2014, Buterin et al. introduced Ethereum, a new blockchain framework that allowed developers to build 
diverse blockchain applications using “smart contracts.” However, Ethereum also faced scalability issues, 
achieving only around 15 TPS, which was inadequate for high-throughput applications such as gaming or 
decentralized exchanges.

Given these performance constraints, numerous blockchain projects have sought to enhance transaction 
throughput. Some proposed replacing the Proof-of-Work (PoW) consensus with Proof-of-Stake (PoS), 
while others, like EOS, implemented Delegated Proof of Stake (DPoS), where block proposers are elected 
through voting rather than an on-chain algorithmic process. Projects such as IOTA adopted a Directed 
Acyclic Graph (DAG) structure to circumvent the limitations of sequential transaction processing.

Nevertheless, these solutions often compromise essential aspects such as security and decentralization. A 
promising approach that maintains both is sharding, which involves dividing the network into multiple 
groups (shards) of validators that process transactions concurrently. This method increases total 
transaction throughput proportionally with the number of shards. Zilliqa was the first public blockchain to 
tackle the scalability issue using sharding. However, it has two main drawbacks: it does not implement state 
sharding, which limits participation from devices with restricted resources, and its sharding mechanism is 
vulnerable to single-shard takeover attacks due to its PoW-based randomness generation.

We present Intelchain, an advanced sharding-based blockchain that is fully scalable, provably secure, and 
energy efficient. Intelchain addresses the shortcomings of existing blockchains by integrating cutting-edge 
research and engineering practices into a finely-tuned system. Intelchain's key innovations include:

● Fully Scalable
Intelchain achieves full scalability by sharding not only network communication and transaction 
validation, as seen in Zilliqa, but also the blockchain state. This comprehensive sharding approach 
ensures that Intelchain can efficiently manage and distribute data across the network, making it a 
fully scalable blockchain.
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* Secure Sharding
Intelchain's sharding process is provably secure due to its Distributed Randomness Generation (DRG)
process, which is designed to be unpredictable, unbiasable, verifiable, and scalable. Furthermore,
Intelchain periodically reshards the network in a non-disruptive manner, safeguarding against slowly
adaptive Byzantine adversaries.
* Efficient and Fast Consensus
Intelchain employs a Proof-of-Stake (PoS) mechanism to select validators, making it energy efficient
compared to other sharding-based blockchains that rely on Proof-of-Work (PoW). Consensus is achieved
through a linearly scalable Byzantine Fault Tolerance (BFT) algorithm, which is 100 times faster than the
traditional Practical Byzantine Fault Tolerance (PBFT).
* Adaptive-Thresholded PoS
The threshold of stakes required for a node to join the network is dynamically adjusted based on the total
staking volume. This prevents malicious stakers from concentrating their power in a single shard while
ensuring the threshold is low enough to allow participation from small stakers, enabling them to earn
rewards.
* Scalable Networking Infrastructure
Utilizing RaptorQ fountain code, Intelchain can swiftly propagate blocks within and across shards using
the Adaptive Information Dispersal Algorithm. Additionally, Intelchain adopts Kademlia routing to
facilitate cross-shard transactions, scaling logarithmically with the number of shards.
Consistent Cross-Shard Transactions
Intelchain supports cross-shard transactions by enabling direct communication between shards. An
atomic locking mechanism ensures the consistency and reliability of these transactions, maintaining
system integrity.

By innovating on both the protocol and network layers, Intelchain provides a scalable and secure 
blockchain system capable of supporting the emerging decentralized economy. Intelchain enables 
applications previously impractical on blockchain, including high-volume decentralized exchanges, 
interactive fair games, Visa-scale payment systems, and Internet-of-Things transactions. Intelchain aims to 
scale trust for billions of people and foster a radically fair economy. 

2. Consensus Mechanism
The consensus protocol is fundamental to any blockchain, determining how validators securely and 
efficiently agree on the next block. The first blockchain consensus protocol, powering Bitcoin, is Proof-of-
Work (PoW). In PoW, miners compete to solve cryptographic puzzles, and the first to solve the puzzle gets 
to propose the next block and earn token rewards. PoW relies on the assumption that the majority of 
hashing power is controlled by honest nodes. The longest chain is considered the canonical one, which is 
why PoW is also known as chain-based consensus.

Practical Byzantine Fault Tolerance (PBFT) is another consensus protocol, studied for over two decades in 
academia. In PBFT, a "leader" node is elected, with the other nodes acting as "validators." The PBFT process 
involves two main phases: the prepare phase and the commit phase.
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involves two major phases: the prepare phase and the commit phase. In the prepare phase, the leader  
broadcasts  its  proposal  to  all  of  the  validators,  who  in  turn  broadcast  their  votes  on  the  proposal to 
everyone else. The reason for the rebroadcasting to all validators is that the votes of each validator need 
to be counted by all other validators. The prepare phase finishes when more than  2f + 1 
 consistent votes are seen, where  f  is the number of malicious validators, and the total  number of 
validators plus the leader is  3f + 1 . The commit phase involves a similar vote counting process,  and  
consensus  is  reached  when  2f + 1   consistent  votes  are  seen.  Due  to  the  rebroadcasting of votes 
among validators, PBFT has  O(N 2)  communication complexity, which is not scalable for a blockchain 
system with hundreds or thousands of nodes. 

As  an  improvement  on  PBFT  ,  Intelchain's  consensus  protocol  is linearly scalable in terms of  
communication  complexity,  and  thus  we  call it Fast  Byzantine  Fault  Tolerance  (FBFT).  In  FBFT, 
instead  of  asking  all  validators  to  broadcast  their  votes,  the leader runs a multi-signature signing  
process to collect the validators’ votes in a  O(1) -sized multi-signature and then broadcast it. So instead  
of  receiving  O(N )   signatures,  each  validator  receives  only  one  multi-signature,  thus  reducing the 
communication complexity from O(N 2)  to O(N ) . 

The  idea  of  using  O(1) -sized  multi-signature  is  inspired  by  ByzCoin’s  BFT  which  uses  the  Schnorr  
signature  scheme  for  constant-sized multi-signature  aggregation  and  forms  a  multicast tree  among  
validators  to  facilitate  the  message  delivery.  However,  a  Schnorr  multi-signature  requires  a  secret  
commitment  round,  which  leads  to  a  total  of  two  round-trips  for  a  single multi-signature.  
Intelchain  improves  upon  that  by  using  BLS  (Boneh–Lynn–Shacham)  multi-signature, which 
only requires one round-trip. Therefore, FBFT is at least 50% faster than ByzCoin’s  BFT.  Besides,  
Intelchain  adopts  RaptorQ  fountain  code  to  speed  up  the  block  broadcasting process (discussed in. 
The fountain code broadcasting technique also avoids a security issue in ByzCoin’s original tree-based 
multicasting design. 

 communication during a single round of consensus.  

Specifically, Intelchain’s FBFT consensus involves the following steps: 
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1. The  leader  constructs  the  new  block  and  broadcasts  the  block  header  to  all  validators.
Meanwhile,  the  leader  broadcasts  the  content  of  the  block  with erasure coding  (details discussed
in. This is called the “announce” phase.

2. The  validators  check  the  validity  of  the  block  header,  sign  the  block  header  with  a  BLS
signature, and send the signature back to the leader.

3. The  leader  waits  for  at  least  2f + 1   valid  signatures  from  validators  (including  the  leader itself)
and  aggregates  them  into  a  BLS  multi-signature.  Then  the  leader  broadcasts  the aggregated
multi-signature  along  with  a  bitmap indicating which validators  have  signed. Together with Step
2, this concludes the “prepare” phase of PBFT.

4. The  validators  check  that  the  multi-signature  has  at  least  2f + 1   signers,  verify  the
transactions in the block content broadcasted from the leader in Step 1, sign the received
message from Step 3, and send it back to the leader.

5. The  leader  waits  for  at  least  2f + 1  valid signatures (can be different signers from Step 3) from
Step 4, aggregates them together into a BLS multi-signature, and creates a bitmap logging  all
the  signers.  Finally,  the  leader  commits  the  new  block  with  all  the multi-
signatures and bitmaps attached, and broadcasts the new block for all validators to commit.
Together with Step 4, this concludes the “commit” phase of PBFT.

The validators of Intelchain's consensus are elected based on Proof-of-Stake. Therefore, the actual protocol 
differs slightly from the one described above in a sense that a validator with more voting shares has more 
votes than others, rather than one-signature-one-vote. So instead of waiting for at least  2f + 1   signatures  
from  validators,  the  leader  waits  for  signatures  from  the  validators  who  collectively  possess  at  least  
2f + 1 voting  shares.  The  details  of  the  proof-of-stake  election mechanism will be discussed. 

3. Sharding
Blockchain sharding as a scalability solution has gained lots of attention since late 2017. Various 
sharding solutions have been proposed both in industry and academia. 

In industry, Zilliqa was the first sharding-based public blockchain that claimed a throughput of 2,800  
TPS.  Zilliqa  uses  PoW  as  identity  registration  process  (i.e.  Sybil  attack  prevention).  Zilliqa’s network 
contains a single directory-service  committee and multiple shard committee (i.e. network  sharding) ,  each  
containing  hundreds  of  nodes.  Transactions  are  assigned  to  different  shards and processed separately 
(i.e. transaction sharding) . The resulting blocks from all shards are collected and merged at the 
directory-service committee. Zilliqa is not a state sharding solution because each node has to hold the entire 
blockchain state to be able to process transactions. 

In  academia,  publications  like  Omniledger  and  RapidChain  have  proposed  solutions  that  feature  state  
sharding  where  each  shard  holds  a  subset  of  the  blockchain  state.  Omniledger employs a multi-party 
computation scheme called RandHound to generate a secure random number,  which  is  used  to  
randomly  assign  nodes  into  shards.  Omniledger  assumes  a  slowly 
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adaptive  corruption model where attackers can corrupt a growing portion of the nodes in a shard over  
time.  Under  such  security  model,  a  single  shard  can  be  corrupted  eventually.  Omniledger  prevents the 
corruption of shards by reshuffling all nodes in the shards at a fixed time interval called epoch . RapidChain 
builds on top of Omniledger and proposes the use of the Bounded Cuckoo Rule  to reshuffle nodes 
without interruptions.  

Intelchain draws inspiration from these three previous solutions and designs a PoS-based full  sharding  
scheme  that’s  linearly  scalable  and  provably  secure.  Intelchain  contains  a  beacon  chain and multiple 
shard chains. The beacon chain serves as the randomness beacon and identity register,  while  the  shard  
chains  store  separate  blockchain  states  and  process  transactions  concurrently. Intelchain proposes an 
efficient algorithm for  randomness  generation  by  combining Verifiable Random Function (VRF) and 
Verifiable Delay Function (VDF). Intelchain also incorporates PoS in the sharding process which shifts 
the security consideration of a shard from the minimum number of nodes to the minimum number of 
voting shares.  

3.1 Distributed Randomness Generation 

Background 
Various approaches have been proposed to assign nodes into shards such as randomness-based 
sharding  location-based  sharding  and  centrally-controlled  sharding . Out of all the  approaches,  
randomness-based  sharding  has  been recognized  as  the  most  secure  solution.  In randomness-based 
sharding, a mutually agreed random number is used to determine the sharding assignment for each node. 
The random number must have the following properties: 

1. Unpredictable: No one should be able to predict the random number before it is generated.
2. Unbiaseable: The process of generating the random number should not be biasable by any

participant.
3. Verifiable:  The  validity  of  the  generated  random  number  should  be  verifiable  by  any

observer.
4. Scalable:  The  algorithm  of  randomness  generation  should  scale  to  a  large  number  of

participants.

Omniledger uses the RandHound protocol, which is a leader-driven distributed randomness 
generation  (DRG)  process  that  involves  PVSS  (Publicly  Verifiable  Secret  Sharing)  and  Byzantine  
Agreement. RandHound is an  O(n * c2)  protocol that divides participant nodes into multiple groups of size 

c . It achieves the first three properties above but is impractically slow to qualify as scalable. 

RapidChain  takes a simpler approach by letting each participant perform VSS (Verifiable Secret 
Sharing)  and  using  the  combined  secret  shares  as  the resulting randomness. Unfortunately,  this 
protocol is not secure because the malicious nodes can send inconsistent shares to different nodes.  
Besides,  RapidChain  does  not  describe  how  the  nodes  reach  consensus  on  the  multiple possible 
versions of reconstructed randomness. 
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In  addition,  Algorand relies  on  the  VRF-based  (Verifiable  Random  Function)  cryptographic  sortition 
to select the group of consensus validators. The Ethereum 2.0 design proposes the use of VDF (Verifiable 
Delay Function) to delay the revelation of the actual random number so as to prevent last-revealer 
attack. The VDF is a newly invented cryptographic primitive; it takes an adjustable minimum amount of 
time to compute and the result can be verified immediately. 

Scalable Randomness Generation with VRF and VDF 
Intelchain's  approach  combines  the  strengths  of  the  solutions  above.  First,  Intelchain's  DRG  
protocol  complexity  is  O(n) ,  which  in  practice  is  at  least  an  order  of  magnitude  faster  than 
RandHound.  Second,  unlike  RapidChain’s  simple  VSS-based  approach,  ours  is  unbiasable  and  
verifiable.  Third,  compared  to  Ethereum  2.0’s  solution,  our  approach  uses  BFT  consensus  to provide 
finality to the random number. Specifically, the protocol includes the following steps: 

1. A leader sends an  init  message with the hash of the last block H(Bn−1) to all the validators.
2. For  each  validator  i ,  after  receiving  the   init  message,  a  VRF  is  computed  to  create  a 

random  number  ri   and  a  proof  pi :  (ri, pi) = V RF (ski, H(Bn−1), v)   ,  where  ski   is  the secret  
key  of  validator  i   and  v   is  the  current  view  number  of  consensus.  Then,  each validator 
sends back (ri, pi) to the leader.

3. The  leader waits until it receives at least  f + 1  valid random numbers and combines them with
an XOR operation to get the preimage of the final randomness pRnd .

4. The leader runs BFT among all the validators to reach consensus on the pRnd and commit it in
block Bn .

5. After  pRnd   is  committed,  the  leader  starts  computing  the  actual  randomness Rnd =
V DF (pRnd, T ) , where  T  is the VDF difficulty and is set algorithmically such that the
randomness can only be computed after k blocks.

6. Once  Rnd   is  computed,  the  leader  initiates  a  BFT  among  all  validators  to  agree  on  the
validity of Rnd and finally commit the randomness into the blockchain.

The VDF (Verifiable Delay Function) delays the revelation of the final randomness. 

The  VDF  is  used  to  provably  delay  the  revelation  of  Rnd   and  prevent  a  malicious  leader  from  biasing 
the randomness by cherry-picking a subset of the VRF random numbers. Because of  the 
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VDF,  the  leader won’t be able to know the actual final randomness before  pRnd  is committed to  the  
blockchain.  By  the  time  Rnd   is  computed  with  the  VDF,  pRnd   is  already  committed  in  a previous 
block so the leader cannot manipulate it anymore. Therefore, the best a malicious leader 
can  do  is  to  either  blindly  commit the randomness  pRnd , or stall the protocol by not committing  
pRnd . The former is the same as the honest behavior. The latter won’t cause much damage as the same 
timeout mechanism in PBFT will be used to switch the leader and restart the protocol. 

We assume, in the long run, the existence of ASICs to compute VDFs, where a few altruistic nodes running 
an ASIC (Application-Specific Integrated Circuit) will publish the result, and no one could game the 
system. It is possible, before VDF ASICs are in production, that an attacker with a faster computing  
device  could  calculate  the  result  before  other  honest  nodes.  Until  this  happens,  the  attacker  can only 
know the randomness slightly before  the  honest  nodes.  While  in  principle  the attacker could take advantage 
of this (e.g. withdrawing its fund if the bet on a smart contract was unfavorable to him), this problem can 
be mitigated on the smart contract layer with a proper delay, 
such  that  there  should  be  a  waiting  period  for  the  randomness  to be committed to the protocol  before 
a fund withdrawal is made possible. 

3.2 Epochs 

In Intelchain, the consensus and sharding process is orchestrated by the concept of epochs. An epoch is 
a predetermined time interval (e.g. 24 hours) during which the sharding structure is fixed and each shard 
continuously runs consensus with the same set of validators. At the beginning of each epoch, a random 
number will be generated using the DRG protocol and the  sharding  structure  will  be  determined  based  
on  that  randomness.  Validators  who  want  to  validate transactions in epoch  e  need to stake their 
tokens during epoch  e − 1 . The cutoff time for staking is before the randomness preimage pRnd  is 
committed into the blockchain. 

3.3 Staking-based Sharding 

Validator Registration 
Sybil  attack  prevention  is  a  key  security  consideration  in  public  blockchains.  Bitcoin  and  Ethereum 
require the miners to compute a cryptographic puzzle (PoW) before they can propose a block. Similarly, 
sharding-based blockchains like Zilliqa or Quarkchain also use PoW to prevent  Sybil  attacks.  
Intelchain  adopts  a  different  approach  with  proof-of-stake  (PoS)  as  the  validator  registration  or  
Sybil  attack  prevention  mechanism.  In  order  to  become  a  Intelchain validator,  prospective  
participants  (or  stakers)  have  to  stake  a  certain  amount  of  tokens  to  be  eligible. The number of tokens 
staked will determine the number of voting shares assigned to the validator. Each voting share 
corresponds to one vote in the BFT consensus.  
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Sharding by Voting Shares 

The stakers obtain voting shares proportional to their staked tokens. Voting shares are  then randomly 
assigned to shards. Stakers become validators for the shard(s) where their voting  shares are assigned. 

A voting share is a virtual ticket that allows a validator to cast one vote in the consensus. Validators can 
acquire voting shares by staking tokens. The amount of tokens required for a voting share is 
algorithmically  adjusted.  At  the  beginning  of  each  epoch,  new  validators’  voting  shares  will  be  
randomly assigned to shards. The new validators join the shard(s) where  their  voting shares get assigned. 
The consensus in a shard is reached by validators who collectively possess at least 2f + 1  voting shares to 
sign the block.  

To guarantee the security of a single shard, the amount of voting shares by malicious validators 

1needs to be kept below  3  of all the voting shares in that shard. This is required due to the nature
of  BFT  consensus.  Intelchain's  adaptive  thresholded  PoS  guarantees  the  above  security  
requirement  by  adaptively  adjusting  the  price  of  a  voting  share  and  assigning  individual  voting shares to 
shards rather than individual validators. 

Our security assumption is that across all the staked tokens, up to  4
1  of them belong to malicious 

validators. If we shard by validators (i.e. assign one validator to one shard), in the worst case where 
1a  single  malicious  validator  holds  4   of  all  the  staked  tokens  (or  the  voting  shares),  it  will  easily

1possess more than  3  voting shares in that shard. The reason is that the stakes at each shard is  m

times  less  than  the  stakes  of  the  whole  network, where  m  is the number of shards. We call this  attack 
scenario a large-stake attack  (a special type of single-shard takeover attack). 

To  prevent  large-stake  attack ,  instead  of  sharding  by  validators,  we  shard  by  voting  shares  (i.e.  assign 
one voting share to one shard). Specifically, after  the  Rnd   is  revealed  at  the  start  of  the 
current epoch, a random permutation (seeded with  Rnd ) on all the voting shares will be done and  the 
permuted list of voting shares will be divided evenly into  m  buckets, where  m  is the number of shards.  The  
voting  shares  falling  in  the  i th  bucket  are  assigned  to  shard  i ,  so  are  the 
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corresponding  validators.  In  practice,  a  single  validator  may  be  assigned  to multiple shards if he  
possesses voting shares assigned to those shards. The shard leader is determined as the validator who 
possess the first voting share in the bucket. 

It’s worth noting that validators with larger stakes will have more chance of being selected as the leader. 
We argue that it’s actually a desirable scenario because large stakers have more incentive to  follow  the  
protocol  due  to  the  fear  of  their  stake  being  slashed, In addition, they are also more likely to possess 
more powerful machines with fast and stable network. 

Adaptive-Thresholded PoS 
The price of a voting share is set algorithmically so that it’s small enough that malicious stakers can not 
concentrate their voting power in a single shard. Specifically, we set the price of a voting share 
to be P vote tokens: 

P vote = TSe−1
NumShard  λ*

Here  λ  is a security parameter,  NumShard  is the number of shards and  T Se−1  is the total amount  of 
tokens staked during epoch e − 1 . 

Now  we  prove  that  when  λ > 600 ,  the  chance  of  a  single  shard  having  more  than  3
1   malicious voting 

shares (i.e. probability of failure) is negligible. 

.umShard λGiven the definition of  P vote , the total number of voting shares will be  N =
P vote

TSe−1 = N *   
Given a trustable randomness source (discussed in §3.1) and the sharding process based on the 
randomness,  the  probability  distribution  of  the  number  of  malicious  voting  shares  in  each  shard  can be 
modeled as a hypergeometric distribution (i.e. random sampling without replacement): 

Here is the total number of voting shares, is the maximum number of malicious voting  N                 K = 4
N                

is the number of voting shares in each shard, andN                   kshares,  n = NumShard       is  the  number  of
malicious  voting  shares  in  a shard. The actual failure rate of a shard  P (X ≤ k)  follows cumulative 
hypergeometric  distribution  CDF hg(N , K , n, k)   which,  when  N  is  large,  degrades  to  binomial  

distribution (i.e. random sampling with replacement): 
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We  can  show  that  when  n  is  large  enough,  the  probability  that  a  shard  contains  more  than  3
1 tokens

held by malicious entities is negligible. In fact, when  n = 600 , the probability that a shard 
1contains less than  3  malicious voting shares is (X 00) .999997P ≤ 2 = 0 , which translates to a shard 

failure  (i.e.  consensus  cannot  be  reached)  rate  of  “once  in  around  1000  years”  (given  an  epoch  
interval of 24 hours). Therefore, we will set  λ = 600  to guarantee the high security of our shards. 
(Intuitively,  λ   governs  minimum  number  of  voting  shares  a  single  shard  should  contain.  This  is  
functionally similar to the minimum number of nodes in a shard as described in other PoW-based 
sharding solutions) 

This approach is resistant to the fluctuation of the number of validators. We are not setting a lower limit 
on number of validators in each shard as in other solutions like Zilliqa. Instead, we adopt 
an adaptive PoS-based model to ensure that the malicious people can never occupy more than  3

1 of the
voting shares in a single shard, thus making it secure. 

3.4 Resharding 

We’ve  described  a  secure  sharding  scheme  that  prevents  malicious validators from overtaking a  single  
shard.  Nonetheless,  if  the  sharding  structure  stays  fixed,  malicious  attackers  can  still overtake a 
shard by corrupting the validators in that shard. There are three models of attackers: 

1. Static  Round-Adaptive:  where  attackers  can  only  corrupt  a  subset  of  nodes  at  a
predetermined  stage.  Elastico  assumes  attackers  can  only  corrupt  nodes  at  the beginning of
each epoch.

2. Slowly  Adaptive:  where  attackers  can  corrupt  a  subset  of  nodes  over  time  during  the epoch.
3. Fully Adaptive: where attackers can corrupt a subset of nodes instantaneously and at any time

Intelchain  assumes  the  slowly  adaptive  corruption  model  under  which the attacker can corrupt a  
constant  number  of  nodes  and  it  takes  a  certain amount of time.  Omniledger   assumes  the same 
corruption model and it prevents the attack by replacing validators in all shards every epoch. This 
approach has two major problems. The first is the high cost of bootstrapping at every epoch. The second 
is the security concern when all nodes are being replaced during the consensus. 

Intelchain  mitigates  these  problems  by  adopting  the  Cuckoo-rule  based  resharding  mechanism. After 
the end of an epoch, the validators who withdrew their stake will be evicted from the network, while 
those who keep their stakes stay. The new validators who staked during this epoch get  new  
voting  shares.  These  voting  shares  will  be  randomly  assigned  to  the  shards  who  have  more than the 
median of the total voting shares. Next, a constant number of the voting shares from 
all  shards  will  be  randomly  re-distributed  to  the  other  half  of  the  shards  who  have less than the  
median of total voting shares. It’s proven in that this  resharding scheme can keep the voting shares in all 
shards balanced while fulfilling the security requirement. 
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3.5 Fast State Synchronization 

The first block of an epoch contains a hash link to the first block of last epoch. This allows  fast state 
synchronization of new nodes where they can rely only on the blocks in grey to quickly  verify the current 

state.  

When validators join a new shard, they will need to quickly synchronize to the current state of the shard  
in  order  to  validate  new  transactions.  The  traditional  procedure  of  downloading  the  blockchain 
history and reconstructing the current state is too slow for resharding to be possible (it takes days to fully 
synchronize the Ethereum blockchain history). Fortunately, the current state is orders  of  magnitude  
smaller  than  the  whole  blockchain  history.  Downloading  the  current  state  within the time window of an 
epoch is feasible compared to downloading the whole history.  

In  Intelchain,  new  validators  joining  a  shard  first  download  the  current  state  trie  of  that shard so  they 
can start validating transactions quickly. To ensure the current state downloaded is valid, the new  
node  needs  to  do  proper  verification.  Instead  of  downloading  the  whole  blockchain  history  and 
replaying all the transactions to validate the current state, the new node downloads historical block  
headers  and  validates  the  headers  by  checking  their  signatures.  As  long  as  there  is  a  cryptographic 
trace (e.g. hash pointers and signatures) from the current state back to the genesis block, the state is 
valid. Nonetheless, signature verification is not computationally free and it takes a significant amount of 
time to verify all the signatures starting from the genesis block. To mitigate this problem, the first block 
of each epoch will include an additional hash pointer to the first block of  the  last  epoch.  This  way,  the  
new  node  can  jump  across  the  blocks  within  an  epoch  when  tracing hash pointers to genesis block. 
This will significantly speed up the verification of the current blockchain state. 

To  further  optimize  the  state  synchronization  process, we will make the blockchain state itself as  small 
as possible. One observation from the Ethereum blockchain state is that a lot of accounts are empty and 
wasting the precious space of blockchain state. In Ethereum, the empty accounts with a specific nonce 
cannot be deleted because of potential replay attacks where old transactions are re-submitted on the 
deleted account. Intelchain will adopt a different model of avoiding replay attacks by letting the 
transactions specify the hash of the current block: a transaction is only valid before a certain number (e.g. 
100) of blocks following the block of the specified hash. This way, the old accounts can be safely deleted and 
the blockchain state can be kept slim. 
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4. Shard Chain and Beacon Chain

4.1 Shard Chain 
A shard chain is a blockchain that processes and validates its own transactions and stores its own state.  A  
shard  only  processes  transactions  that  is  relevant  to  itself.  Although  a  shard  chain  is  relatively  
independent,  it  will  communicate  with  other  shard  chains  through  cross-shard 
communication. 

Cross-shard Communication 
Cross-shard communication is a key component of any sharding-based blockchain. Cross-shard 
capability breaks the barrier between shards and extends the utility of a single shard beyond itself. Overall, 
there are three categories of cross-shard communication: 

1. Main-chain-driven: Projects like Zilliqa rely on the main chain to achieve transactions across 
shards.

2. Client-driven: Omniledger proposed a client-driven cross-shard transaction mechanism where 
the messages between shards are collected and sent to shards by clients. This adds an extra burden 
to the client that is not desirable for an adhoc light client.

3. Shard-driven:  RapidChain     proposed  that  the  messages  between  shards  are  directly sent by the 
nodes in the shard without external help.

Intelchain adopts the shard-driven approach for its simplicity and the absence of burden on clients. We 
believe the benefits of shard-driven communication outweighs its drawbacks. The cost on the 
overall  network  for  shard-driven  communication  can  be  considerable because every cross-shard  
message is a network-level broadcast, which incurs a  O(N )  network cost. To solve this problem, 
Intelchain  uses  the  Kademlia  routing  protocol  to  reduce  the  communication  complexity  to  
O(log(N )) . In addition, the data being communicated will be encoded with erasure code to ensure the 
robustness of cross-shard communication. 

4.2 Beacon Chain 
The Intelchain beacon chain is a special blockchain that serves additional purposes compared to the 
shard chains. In effect, the beacon chain is also a shard. Besides processing transactions, like other  shard  
chains  do,  the  beacon  chain  is  in  charge  of  two  additional  key  functionalities:  generating the 
random number and accepting stakes,  which means that the beacon chain is the chain where stakers 
deposit their tokens to become validators. 
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The validators for the beacon chain are determined similarly as the other shard chains are. During the  
sharding  assignment,  the  voting  shares  are  randomly  divided  into  NumShard + b   buckets,  where the 
extra b  buckets are for the beacon chain. 

Hash Link from Shard Chain 

Hash link from beacon chain block to shard chain block. 

The  beacon  chain  helps  strengthen  the  security  and  consistency  of  the  shard  chains’  states  by  including 
the block header from each shard chain. Specifically, after a new block is committed to a shard chain, its 
block header will be sent (via Kademlia-based inter-shard communication) to the beacon chain. The 
beacon chain checks the validity of the block header by: 

1. The  hash  of  its  previous  block,  which  must  have  already  been  committed  in  
the beacon chain;

2. The  signers  of  the  block’s  multi-signature,  which  must  be  the  correct  validators  for  
that shard.

The committed block headers at the beacon chain will then be broadcasted to the whole network. Each 
shard will keep a chain of valid block headers for all other shards, which will be used to check 
the  validity  of  transactions  from  other  shards  (i.e.  simple  payment  verification).  Adding the shard  
chains’ block headers into the beacon chain serves two main purposes: 

1. Increases the difficulty of attacking a single shard.
Attackers  have  to  corrupt  both  the  shard  chain  and  beacon  chain  in  order  to  convince others 
that an alternative block in the shard chain is valid.

2. Reduce the network cost of broadcasting the block headers among shards.
There  will be a  O(N 2)  network communication if we let each shard broadcast its headers 
separately. With the beacon chain as a central relay, the complexity is reduced to O(N ) .
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5. Blockchain State Sharding
Unlike  other  state-sharding  blockchains that  adopted  UTXO  (Unspent  Transaction  Output)  data 
model, Intelchain's state sharding is applied on account-based data model. Each shard chain contains its 
own account state, and all the tokens in existence are spread among all the shard.  

We treat the user account and the smart contract account differently in sharding. An user account can 
have multiple balances at different shards (e.g. 100 tokens at Shard A and 50 tokens at Shard B). A user 
account can move its balance between shards by issuing a cross-shard transaction. A smart contract 
account is limited to the specific shard where the contract was created. However, for a decentralized 
application that requires more throughput than a single shard can handle, the 
Dapp  (Decentralized  Application)  developer  can  instantiate  multiple  instances  of  the  same  smart  
contract in different shards and let each instance handle a subset of the incoming traffic. Note that the 
different instances of the same smart contract do not share the same state, but they can talk to each other 
via cross-shard communication. 

6. Networking
Previous research has pointed out that network capacity is one of the major bottlenecks for blockchain  
systems.  In  order  to  increase  performance,  Intelchain  focuses  on  improving  the  efficiency of 
network utilization. Intelchain also proposes  a  number  of  improvements to deal with real-world 
networking scenarios. 

6.1 Kademlia-based Routing 
Inspired by RapidChain , we will adopt Kademlia as the routing mechanism for cross-shard messages.  
Each  node  in  the  Intelchain's  network  maintains  a  routing  table  that  contains  nodes  from different 
shards. The distance between shards is defined as the XOR distance of the shard IDs. When a message 
from shard A needs to be sent to shard B, the nodes in shard A will look at the  routing  table  and  send  
the  message  to  the  nodes  with  the  closest  shard  ID.  With  Kademlia-based  routing,  a  message  
only  travels  across  O(logN )   nodes  before  it  reaches  the destination  shard.  Compared  to  normal  gossip  
broadcasting,  which  requires  a  O(N )   network  complexity, the Kademlia routing mechanism can 
significantly reduce the overall network load in a sharded blockchain. 
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6.2 Efficient Broadcasting with Erasure Code 

Comparison between normal gossip broadcast with gossip broadcast with erasure code. 

Broadcast  is  a  frequent  network  action  in  any  blockchain  system  built  on  P2P  (Peer-to-Peer)  
network  overlay.  Specifically  in  our  consensus  protocol,  there  are  three  scenarios  where 
broadcasting is needed: 

1. A newly proposed block needs to be broadcasted by the leader to all validators.
2. A newly generated master chain block needs to be broadcasted to the whole network.
3. The cross shard communication requires the broadcast of a message between shards.

In a normal P2P broadcasting, the original sender needs to send a copy of the message to each of 
its neighbors. This will incur  O(d * M )  network load on the sender, where  d  is the average number of  

neighbors  of  the  sender  and  M   is  the  message  size.  Instead,  in  Intelchain  a  sender  first encodes the 
message with erasure code and then send chunks of the encoded message to each 
neighbor.  This  reduces  the  load  on  the  sender  to  O(M + e)  where  e  is the size of erasure code  and it is 
usually smaller than the size of the original message  M . Therefore, Intelchain's network broadcasting 
mechanism significantly lowers the network load of the broadcast sender. In addition, Intelchain proposes 
to improve IDA’s robustness by replacing the original Reed-Solomon erasure code with RaptorQ 
fountain code so that the broadcaster can always send more erasure codes to further ensure the data is 
eventually received. 

6.3 FEC-based Unicast 
Traditional  reliable  transports  such  as  TCP relies  upon  retransmission  and  ACK-based  signaling 
in order to deal with lost packets. This is known to introduce latency spikes proportional to  the  
round-trip  time  between  the  sender  and  receiver.  Also,  window-based  congestion  control—such  
as  Reno,  NewReno,  and  CUBIC  in  use  by  most  TCP  implementations—are  all 
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additive  increase/multiplicative  decrease  (AIMD)  algorithms,  whose  bandwidth  is  known  to  be  
severely impacted by transient packet losses. 

Intelchain  uses  the  RaptorQ  fountain  code  to  combat  these  two  problems.  Each  message  is  encoded  
into  symbols,  and  symbols  are  sent  over  the  wire  until  the  receiver  acknowledges successful  
decoding  of  the  message  using  the  symbols  that  it  received.  Unlike  using  fixed-rate  codes  such  as  
Reed–Solomon  where  the  transmission  fails  once  the  symbols  have  been exhausted, fountain code 
enables infinite, just-in-time generation and use of encoding symbols. 

6.4 Support for Home Nodes 
P2P nodes on a typical residential network pose a major, distinctively unique problem: They cannot be 
reached from the outside unless mediated by their residential internet router, which employs a 
technique  called  network  address  translation  (NAT).  Support  for  inbound  traffic  by  these  routers  vary, 
and different approaches have been developed to work around different types of routers. In 
particular,  routers  implementing  symmetric  NAT  cannot  easily be worked around unless explicitly  
configured to support other hole-punching mechanisms such as Internet Gateway Device Protocol 
(IGDP). 

Intelchain's  P2P  layer  tries  to  detect  the  NAT  mechanism  behind  which  a  node  operates  and  employs  
the  right  workaround  mechanism,  such  as  STUN,  TURN,  IGDP,  etc.  In  particular, Intelchain  
implements  the  overall  detection  and  mitigation  protocol  named  ICE  (Interactive  Connectivity 
Establishment). 

6.5 Support for Locator Mobility 
Nodes may change their IP addresses, with some type of nodes more so than others. One such example  
is  a  laptop,  which  may  frequently  hop  between  different  Wi-Fi  networks,  with  its  IP  address  
changing  each  time.  When  an  IP  address  of  a  node  changes,  all  existing  transport connections that 
use the IP address as a local or remote endpoint are interrupted, and applications directly  using  such  
transport  connections  need  to  re-establish  connections  using  the  new  IP  address  in  order  to  continue.  
Such  a  connection  handover is hard to implement  correctly  with minimal  application-layer  service  
interruption.  Also,  handling  connection  handover  often  complicates application-layer protocols 
(such as base consensus protocols). 

Intelchain's  network  layer,  in  order  to  solve  this  problem,  introduces  a clean separation between  node  
identity  (cryptographic  key  pair  possessed  by  the  node)  and  node  locators 
(network/transport-layer locator where the node can be reached) using the industry-standard Host 
Identity Protocol Version 2 (HIPv2). HIPv2 lets locators of a node change over time while keeping the  
node  identity,  by  providing  mechanisms  for  locator  discovery,  node-to-node  security  association,  
and  tunneling  of  upper-layer  traffic  associated  with  local/remote  node  identity  as endpoints. 
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7. Incentive Model

7.1 Consensus Rewards 
After  the  successful  commitment  of  a  block,  a  protocol-defined  number  of  new  tokens  will  be  
rewarded  to  all  validators  who  signed  the  block  in  proportion  to  their  voting  shares.  The 
transactions fees are rewarded to validators similarly. 

7.2 Stake Slashing 
For any misbehaviors detected by the network, a certain amount of staked tokens will be slashed. For  
example,  if  a  leader  failed  to  finish  the  consensus  process  and  triggered  the  leader  change 
process,  P vote  staked tokens will be slashed. If validators are proven to sign a dishonest block, all  of their 
stake under the same shard will be slashed. This severe punishment is meant to strongly discourage  any  
dishonest  behavior  and  make  the  network  as  secure  as  possible.  A  proof  of  misbehavior can be two 
signed blocks that conflict with each other. Any  validator  can  submit a transaction  to  prove  the  
misbehavior  of  other  validator  and  if  verified,  the  slashed  token  will  be  rewarded to the prover(s). 

7.3 Stake withdrawal 

Long-range Attacks 
Proof-of-stake  blockchains,  unlike  proof-of-work  blockchains,  tend  to  suffer  from  long-range  attacks
. These are attacks that leverage the fact that proofs are based on signatures rather than on resource-
intensive  tasks.  In  a  long-range  attack,  the  private  keys  of  honest  validators  are stolen  long after they 
have been used, and the attacker is able to create a forked blockchain by signing fake blocks with those 
keys. When this happens, new validators joining the network have no way to distinguish between the 
original, legitimate chain and the attacker’s simulated chain.  

Long-range attacks happen in the following two scenarios. Private key can be compromised either by a 
lack of security on validators, or more commonly, by the fact, after a validator withdraw their token,  
he  could  financially  benefits  if  an  attacker  which  would  be  looking  to  buy  its  private  key.  Also,  by  
design  each  set  of  validators is trusted to approve the  block  of  transactions  that  also determines  the  next  
set  of  validators.  After  enough  private  key  (i.e.  those  that  collectively  hold 

2more  than  3   voting  shares  in  a shard) has been compromised, an attacker has  total control on
who the subsequent validators is. 
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Long-range Defense: Resonant Quorums 
Proof-of-work  blockchain  protects  against  the  above  attacks  by  giving  honest  validators  an  
objective  method  of  fork  choice.  In  a  proof-of-work  blockchain,  the  fork  choice  to  select  the canonical 
chain is the accumulated amount of work done in terms of hashes computed. 

In  a  proof-of-stake  blockchain,  the  only  objective  measure  that  can  be  used  to  select  between  forks is 
the total weighting of signatures used to  approve each  block.  If  we use these weighted signatures to 
compare two different blocks, we come to the following equation to determine when a chain may be 
forked: 

Safety = “Block approval key weight” - “Compromised key weight” 

The “Block approval key weight” means the voting power of the keys that signed on the block. If, by 
stake weight, more private keys are compromised than were used to approve of a block, then the block 
can be forked. Until then, validators will always prefer the original, legitimate version of the block. 

Intelchain  maximizes  the  safety  of  each  block  in  its  proof-of-stake  blockchain  by maximizing this  
equation.  It is infeasible to disincentivize leaking private keys  in the  long  term.  Intelchain  instead 
incentivizes  validators  to  maximize  the  approval  weight  of  each  block  after  a  quorum  has  been  
achieved. This is done by requiring validators to sign each quorum-approved block before allowing those 
validators to withdraw their stake. These new additional signatures only need to exist within the 
blockchain, and they do not need to be generated at consensus time for each block. Because of this, the 
new signatures can be added to subsequent blocks when validators decide to withdraw their stake, and so 
they may freely improve the safety of the chain without impacting its liveness. 

8. Future Research

8.1 Fraud Proofs 
The  capability  of  proving  the  misbehavior  of  validators  is  important  for  a  light  client  to  trust  the  
block data they received. In the case of cross-shard communication, each shard is a light client of other 
shards. Ensuring that messages sent between shards are trustable is crucial for inter-shard data 
consistency. We are actively researching the topic of data availability  and fraud proofs to securitize our 
protocol. 

8.2 Stateless Validators 
In  a  high  throughput  blockchain,  the  size  of  the  blockchain  data  will  grow  faster  than  existing  chains, 
which is a major problem for new validators to sync up quickly. This makes the resharding process 
problematic because if new validators can’t sync up in time, then the quorum of validators may not be 
reached for a new block to be approved, and even if the quorum is met, the security of 
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the protocol would be reduced. State block pruning is one mitigation to the problem, but it’s not 
optimal since the state itself can grow large. We are actively looking into enabling stateless client where 
validators doesn’t have to sync up the full state to validate transactions. 
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