
 Technical Whitepaper

Intelchain Team
Version 1.0

1.Introduction
Since the release of the Bitcoin whitepaper in 2008, the idea of blockchain has gained global recognition.
Despite the increasing awareness of decentralized money and applications, design constraints have
hindered Bitcoin's primary goals. Originally intended as a peer-to-peer payment system to facilitate
transactions without intermediaries like banks, Bitcoin's popularity exposed its limitations, notably a
throughput of approximately 7 transactions per second (TPS) and high transaction costs.

In 2014, Buterin et al. introduced Ethereum, a new blockchain framework that allowed developers to build
diverse blockchain applications using “smart contracts.” However, Ethereum also faced scalability issues,
achieving only around 15 TPS, which was inadequate for high-throughput applications such as gaming or
decentralized exchanges.

Given these performance constraints, numerous blockchain projects have sought to enhance transaction
throughput. Some proposed replacing the Proof-of-Work (PoW) consensus with Proof-of-Stake (PoS),
while others, like EOS, implemented Delegated Proof of Stake (DPoS), where block proposers are elected
through voting rather than an on-chain algorithmic process. Projects such as IOTA adopted a Directed
Acyclic Graph (DAG) structure to circumvent the limitations of sequential transaction processing.

Nevertheless, these solutions often compromise essential aspects such as security and decentralization. A
promising approach that maintains both is sharding, which involves dividing the network into multiple
groups (shards) of validators that process transactions concurrently. This method increases total
transaction throughput proportionally with the number of shards. Zilliqa was the first public blockchain to
tackle the scalability issue using sharding. However, it has two main drawbacks: it does not implement state
sharding, which limits participation from devices with restricted resources, and its sharding mechanism is
vulnerable to single-shard takeover attacks due to its PoW-based randomness generation.

We present Intelchain, an advanced sharding-based blockchain that is fully scalable, provably secure, and
energy efficient. Intelchain addresses the shortcomings of existing blockchains by integrating cutting-edge
research and engineering practices into a finely-tuned system. Intelchain's key innovations include:

● Fully Scalable
Intelchain achieves full scalability by sharding not only network communication and transaction
validation, as seen in Zilliqa, but also the blockchain state. This comprehensive sharding approach
ensures that Intelchain can efficiently manage and distribute data across the network, making it a
fully scalable blockchain.

1

* Secure Sharding
Intelchain's sharding process is provably secure due to its Distributed Randomness Generation (DRG)
process, which is designed to be unpredictable, unbiasable, verifiable, and scalable. Furthermore,
Intelchain periodically reshards the network in a non-disruptive manner, safeguarding against slowly
adaptive Byzantine adversaries.
* Efficient and Fast Consensus
Intelchain employs a Proof-of-Stake (PoS) mechanism to select validators, making it energy efficient
compared to other sharding-based blockchains that rely on Proof-of-Work (PoW). Consensus is achieved
through a linearly scalable Byzantine Fault Tolerance (BFT) algorithm, which is 100 times faster than the
traditional Practical Byzantine Fault Tolerance (PBFT).
* Adaptive-Thresholded PoS
The threshold of stakes required for a node to join the network is dynamically adjusted based on the total
staking volume. This prevents malicious stakers from concentrating their power in a single shard while
ensuring the threshold is low enough to allow participation from small stakers, enabling them to earn
rewards.
* Scalable Networking Infrastructure
Utilizing RaptorQ fountain code, Intelchain can swiftly propagate blocks within and across shards using
the Adaptive Information Dispersal Algorithm. Additionally, Intelchain adopts Kademlia routing to
facilitate cross-shard transactions, scaling logarithmically with the number of shards.
Consistent Cross-Shard Transactions
Intelchain supports cross-shard transactions by enabling direct communication between shards. An
atomic locking mechanism ensures the consistency and reliability of these transactions, maintaining
system integrity.

By innovating on both the protocol and network layers, Intelchain provides a scalable and secure
blockchain system capable of supporting the emerging decentralized economy. Intelchain enables
applications previously impractical on blockchain, including high-volume decentralized exchanges,
interactive fair games, Visa-scale payment systems, and Internet-of-Things transactions. Intelchain aims to
scale trust for billions of people and foster a radically fair economy.

2. Consensus Mechanism
The consensus protocol is fundamental to any blockchain, determining how validators securely and
efficiently agree on the next block. The first blockchain consensus protocol, powering Bitcoin, is Proof-of-
Work (PoW). In PoW, miners compete to solve cryptographic puzzles, and the first to solve the puzzle gets
to propose the next block and earn token rewards. PoW relies on the assumption that the majority of
hashing power is controlled by honest nodes. The longest chain is considered the canonical one, which is
why PoW is also known as chain-based consensus.

Practical Byzantine Fault Tolerance (PBFT) is another consensus protocol, studied for over two decades in
academia. In PBFT, a "leader" node is elected, with the other nodes acting as "validators." The PBFT process
involves two main phases: the prepare phase and the commit phase.

2

involves two major phases: the prepare phase and the commit phase. In the prepare phase, the leader
broadcasts its proposal to all of the validators, who in turn broadcast their votes on the proposal to
everyone else. The reason for the rebroadcasting to all validators is that the votes of each validator need
to be counted by all other validators. The prepare phase finishes when more than 2f + 1
 consistent votes are seen, where f is the number of malicious validators, and the total number of
validators plus the leader is 3f + 1 . The commit phase involves a similar vote counting process, and
consensus is reached when 2f + 1 consistent votes are seen. Due to the rebroadcasting of votes
among validators, PBFT has O(N 2) communication complexity, which is not scalable for a blockchain
system with hundreds or thousands of nodes.

As an improvement on PBFT , Intelchain's consensus protocol is linearly scalable in terms of
communication complexity, and thus we call it Fast Byzantine Fault Tolerance (FBFT). In FBFT,
instead of asking all validators to broadcast their votes, the leader runs a multi-signature signing
process to collect the validators’ votes in a O(1) -sized multi-signature and then broadcast it. So instead
of receiving O(N) signatures, each validator receives only one multi-signature, thus reducing the
communication complexity from O(N 2) to O(N) .

The idea of using O(1) -sized multi-signature is inspired by ByzCoin’s BFT which uses the Schnorr
signature scheme for constant-sized multi-signature aggregation and forms a multicast tree among
validators to facilitate the message delivery. However, a Schnorr multi-signature requires a secret
commitment round, which leads to a total of two round-trips for a single multi-signature.
Intelchain improves upon that by using BLS (Boneh–Lynn–Shacham) multi-signature, which
only requires one round-trip. Therefore, FBFT is at least 50% faster than ByzCoin’s BFT. Besides,
Intelchain adopts RaptorQ fountain code to speed up the block broadcasting process (discussed in.
The fountain code broadcasting technique also avoids a security issue in ByzCoin’s original tree-based
multicasting design.

 communication during a single round of consensus.

Specifically, Intelchain’s FBFT consensus involves the following steps:

3

1. The leader constructs the new block and broadcasts the block header to all validators.
Meanwhile, the leader broadcasts the content of the block with erasure coding (details discussed
in. This is called the “announce” phase.

2. The validators check the validity of the block header, sign the block header with a BLS
signature, and send the signature back to the leader.

3. The leader waits for at least 2f + 1 valid signatures from validators (including the leader itself)
and aggregates them into a BLS multi-signature. Then the leader broadcasts the aggregated
multi-signature along with a bitmap indicating which validators have signed. Together with Step
2, this concludes the “prepare” phase of PBFT.

4. The validators check that the multi-signature has at least 2f + 1 signers, verify the
transactions in the block content broadcasted from the leader in Step 1, sign the received
message from Step 3, and send it back to the leader.

5. The leader waits for at least 2f + 1 valid signatures (can be different signers from Step 3) from
Step 4, aggregates them together into a BLS multi-signature, and creates a bitmap logging all
the signers. Finally, the leader commits the new block with all the multi-
signatures and bitmaps attached, and broadcasts the new block for all validators to commit.
Together with Step 4, this concludes the “commit” phase of PBFT.

The validators of Intelchain's consensus are elected based on Proof-of-Stake. Therefore, the actual protocol
differs slightly from the one described above in a sense that a validator with more voting shares has more
votes than others, rather than one-signature-one-vote. So instead of waiting for at least 2f + 1 signatures
from validators, the leader waits for signatures from the validators who collectively possess at least
2f + 1 voting shares. The details of the proof-of-stake election mechanism will be discussed.

3. Sharding
Blockchain sharding as a scalability solution has gained lots of attention since late 2017. Various
sharding solutions have been proposed both in industry and academia.

In industry, Zilliqa was the first sharding-based public blockchain that claimed a throughput of 2,800
TPS. Zilliqa uses PoW as identity registration process (i.e. Sybil attack prevention). Zilliqa’s network
contains a single directory-service committee and multiple shard committee (i.e. network sharding) , each
containing hundreds of nodes. Transactions are assigned to different shards and processed separately
(i.e. transaction sharding) . The resulting blocks from all shards are collected and merged at the
directory-service committee. Zilliqa is not a state sharding solution because each node has to hold the entire
blockchain state to be able to process transactions.

In academia, publications like Omniledger and RapidChain have proposed solutions that feature state
sharding where each shard holds a subset of the blockchain state. Omniledger employs a multi-party
computation scheme called RandHound to generate a secure random number, which is used to
randomly assign nodes into shards. Omniledger assumes a slowly

4

adaptive corruption model where attackers can corrupt a growing portion of the nodes in a shard over
time. Under such security model, a single shard can be corrupted eventually. Omniledger prevents the
corruption of shards by reshuffling all nodes in the shards at a fixed time interval called epoch . RapidChain
builds on top of Omniledger and proposes the use of the Bounded Cuckoo Rule to reshuffle nodes
without interruptions.

Intelchain draws inspiration from these three previous solutions and designs a PoS-based full sharding
scheme that’s linearly scalable and provably secure. Intelchain contains a beacon chain and multiple
shard chains. The beacon chain serves as the randomness beacon and identity register, while the shard
chains store separate blockchain states and process transactions concurrently. Intelchain proposes an
efficient algorithm for randomness generation by combining Verifiable Random Function (VRF) and
Verifiable Delay Function (VDF). Intelchain also incorporates PoS in the sharding process which shifts
the security consideration of a shard from the minimum number of nodes to the minimum number of
voting shares.

3.1 Distributed Randomness Generation

Background
Various approaches have been proposed to assign nodes into shards such as randomness-based
sharding location-based sharding and centrally-controlled sharding . Out of all the approaches,
randomness-based sharding has been recognized as the most secure solution. In randomness-based
sharding, a mutually agreed random number is used to determine the sharding assignment for each node.
The random number must have the following properties:

1. Unpredictable: No one should be able to predict the random number before it is generated.
2. Unbiaseable: The process of generating the random number should not be biasable by any

participant.
3. Verifiable: The validity of the generated random number should be verifiable by any

observer.
4. Scalable: The algorithm of randomness generation should scale to a large number of

participants.

Omniledger uses the RandHound protocol, which is a leader-driven distributed randomness
generation (DRG) process that involves PVSS (Publicly Verifiable Secret Sharing) and Byzantine
Agreement. RandHound is an O(n * c2) protocol that divides participant nodes into multiple groups of size

c . It achieves the first three properties above but is impractically slow to qualify as scalable.

RapidChain takes a simpler approach by letting each participant perform VSS (Verifiable Secret
Sharing) and using the combined secret shares as the resulting randomness. Unfortunately, this
protocol is not secure because the malicious nodes can send inconsistent shares to different nodes.
Besides, RapidChain does not describe how the nodes reach consensus on the multiple possible
versions of reconstructed randomness.

5

In addition, Algorand relies on the VRF-based (Verifiable Random Function) cryptographic sortition
to select the group of consensus validators. The Ethereum 2.0 design proposes the use of VDF (Verifiable
Delay Function) to delay the revelation of the actual random number so as to prevent last-revealer
attack. The VDF is a newly invented cryptographic primitive; it takes an adjustable minimum amount of
time to compute and the result can be verified immediately.

Scalable Randomness Generation with VRF and VDF
Intelchain's approach combines the strengths of the solutions above. First, Intelchain's DRG
protocol complexity is O(n) , which in practice is at least an order of magnitude faster than
RandHound. Second, unlike RapidChain’s simple VSS-based approach, ours is unbiasable and
verifiable. Third, compared to Ethereum 2.0’s solution, our approach uses BFT consensus to provide
finality to the random number. Specifically, the protocol includes the following steps:

1. A leader sends an init message with the hash of the last block H(Bn−1) to all the validators.
2. For each validator i , after receiving the init message, a VRF is computed to create a

random number ri and a proof pi : (ri, pi) = V RF (ski, H(Bn−1), v) , where ski is the secret
key of validator i and v is the current view number of consensus. Then, each validator
sends back (ri, pi) to the leader.

3. The leader waits until it receives at least f + 1 valid random numbers and combines them with
an XOR operation to get the preimage of the final randomness pRnd .

4. The leader runs BFT among all the validators to reach consensus on the pRnd and commit it in
block Bn .

5. After pRnd is committed, the leader starts computing the actual randomness Rnd =
V DF (pRnd, T) , where T is the VDF difficulty and is set algorithmically such that the
randomness can only be computed after k blocks.

6. Once Rnd is computed, the leader initiates a BFT among all validators to agree on the
validity of Rnd and finally commit the randomness into the blockchain.

The VDF (Verifiable Delay Function) delays the revelation of the final randomness.

The VDF is used to provably delay the revelation of Rnd and prevent a malicious leader from biasing
the randomness by cherry-picking a subset of the VRF random numbers. Because of the

6

VDF, the leader won’t be able to know the actual final randomness before pRnd is committed to the
blockchain. By the time Rnd is computed with the VDF, pRnd is already committed in a previous
block so the leader cannot manipulate it anymore. Therefore, the best a malicious leader
can do is to either blindly commit the randomness pRnd , or stall the protocol by not committing
pRnd . The former is the same as the honest behavior. The latter won’t cause much damage as the same
timeout mechanism in PBFT will be used to switch the leader and restart the protocol.

We assume, in the long run, the existence of ASICs to compute VDFs, where a few altruistic nodes running
an ASIC (Application-Specific Integrated Circuit) will publish the result, and no one could game the
system. It is possible, before VDF ASICs are in production, that an attacker with a faster computing
device could calculate the result before other honest nodes. Until this happens, the attacker can only
know the randomness slightly before the honest nodes. While in principle the attacker could take advantage
of this (e.g. withdrawing its fund if the bet on a smart contract was unfavorable to him), this problem can
be mitigated on the smart contract layer with a proper delay,
such that there should be a waiting period for the randomness to be committed to the protocol before
a fund withdrawal is made possible.

3.2 Epochs

In Intelchain, the consensus and sharding process is orchestrated by the concept of epochs. An epoch is
a predetermined time interval (e.g. 24 hours) during which the sharding structure is fixed and each shard
continuously runs consensus with the same set of validators. At the beginning of each epoch, a random
number will be generated using the DRG protocol and the sharding structure will be determined based
on that randomness. Validators who want to validate transactions in epoch e need to stake their
tokens during epoch e − 1 . The cutoff time for staking is before the randomness preimage pRnd is
committed into the blockchain.

3.3 Staking-based Sharding

Validator Registration
Sybil attack prevention is a key security consideration in public blockchains. Bitcoin and Ethereum
require the miners to compute a cryptographic puzzle (PoW) before they can propose a block. Similarly,
sharding-based blockchains like Zilliqa or Quarkchain also use PoW to prevent Sybil attacks.
Intelchain adopts a different approach with proof-of-stake (PoS) as the validator registration or
Sybil attack prevention mechanism. In order to become a Intelchain validator, prospective
participants (or stakers) have to stake a certain amount of tokens to be eligible. The number of tokens
staked will determine the number of voting shares assigned to the validator. Each voting share
corresponds to one vote in the BFT consensus.

7

Sharding by Voting Shares

The stakers obtain voting shares proportional to their staked tokens. Voting shares are then randomly
assigned to shards. Stakers become validators for the shard(s) where their voting shares are assigned.

A voting share is a virtual ticket that allows a validator to cast one vote in the consensus. Validators can
acquire voting shares by staking tokens. The amount of tokens required for a voting share is
algorithmically adjusted. At the beginning of each epoch, new validators’ voting shares will be
randomly assigned to shards. The new validators join the shard(s) where their voting shares get assigned.
The consensus in a shard is reached by validators who collectively possess at least 2f + 1 voting shares to
sign the block.

To guarantee the security of a single shard, the amount of voting shares by malicious validators

1needs to be kept below 3 of all the voting shares in that shard. This is required due to the nature
of BFT consensus. Intelchain's adaptive thresholded PoS guarantees the above security
requirement by adaptively adjusting the price of a voting share and assigning individual voting shares to
shards rather than individual validators.

Our security assumption is that across all the staked tokens, up to 4
1 of them belong to malicious

validators. If we shard by validators (i.e. assign one validator to one shard), in the worst case where
1a single malicious validator holds 4 of all the staked tokens (or the voting shares), it will easily

1possess more than 3 voting shares in that shard. The reason is that the stakes at each shard is m

times less than the stakes of the whole network, where m is the number of shards. We call this attack
scenario a large-stake attack (a special type of single-shard takeover attack).

To prevent large-stake attack , instead of sharding by validators, we shard by voting shares (i.e. assign
one voting share to one shard). Specifically, after the Rnd is revealed at the start of the
current epoch, a random permutation (seeded with Rnd) on all the voting shares will be done and the
permuted list of voting shares will be divided evenly into m buckets, where m is the number of shards. The
voting shares falling in the i th bucket are assigned to shard i , so are the

8

corresponding validators. In practice, a single validator may be assigned to multiple shards if he
possesses voting shares assigned to those shards. The shard leader is determined as the validator who
possess the first voting share in the bucket.

It’s worth noting that validators with larger stakes will have more chance of being selected as the leader.
We argue that it’s actually a desirable scenario because large stakers have more incentive to follow the
protocol due to the fear of their stake being slashed, In addition, they are also more likely to possess
more powerful machines with fast and stable network.

Adaptive-Thresholded PoS
The price of a voting share is set algorithmically so that it’s small enough that malicious stakers can not
concentrate their voting power in a single shard. Specifically, we set the price of a voting share
to be P vote tokens:

P vote = TSe−1
NumShard λ*

Here λ is a security parameter, NumShard is the number of shards and T Se−1 is the total amount of
tokens staked during epoch e − 1 .

Now we prove that when λ > 600 , the chance of a single shard having more than 3
1 malicious voting

shares (i.e. probability of failure) is negligible.

.umShard λGiven the definition of P vote , the total number of voting shares will be N =
P vote

TSe−1 = N *
Given a trustable randomness source (discussed in §3.1) and the sharding process based on the
randomness, the probability distribution of the number of malicious voting shares in each shard can be
modeled as a hypergeometric distribution (i.e. random sampling without replacement):

Here is the total number of voting shares, is the maximum number of malicious voting N K = 4
N

is the number of voting shares in each shard, andN kshares, n = NumShard is the number of
malicious voting shares in a shard. The actual failure rate of a shard P (X ≤ k) follows cumulative
hypergeometric distribution CDF hg(N , K , n, k) which, when N is large, degrades to binomial

distribution (i.e. random sampling with replacement):

9

https://www.codecogs.com/eqnedit.php?latex=P(X=k)=%5Cdfrac%7B%5Cbinom%7BK%7D%7Bk%7D%5Cbinom%7BN-K%7D%7Bn-k%7D%7D%7B%5Cbinom%7BN%7D%7Bn%7D%7D
https://www.codecogs.com/eqnedit.php?latex=P(X%5Cleq&space;k)&space;=&space;%5Csum_%7Bi=0%7D%5E%7Bk%7D&space;%7B%7Bn%7D%5Cchoose&space;%7Bi%7D%7D&space;p%5Ei(1-p)%5E%7Bn-i%7D

We can show that when n is large enough, the probability that a shard contains more than 3
1 tokens

held by malicious entities is negligible. In fact, when n = 600 , the probability that a shard
1contains less than 3 malicious voting shares is (X 00) .999997P ≤ 2 = 0 , which translates to a shard

failure (i.e. consensus cannot be reached) rate of “once in around 1000 years” (given an epoch
interval of 24 hours). Therefore, we will set λ = 600 to guarantee the high security of our shards.
(Intuitively, λ governs minimum number of voting shares a single shard should contain. This is
functionally similar to the minimum number of nodes in a shard as described in other PoW-based
sharding solutions)

This approach is resistant to the fluctuation of the number of validators. We are not setting a lower limit
on number of validators in each shard as in other solutions like Zilliqa. Instead, we adopt
an adaptive PoS-based model to ensure that the malicious people can never occupy more than 3

1 of the
voting shares in a single shard, thus making it secure.

3.4 Resharding

We’ve described a secure sharding scheme that prevents malicious validators from overtaking a single
shard. Nonetheless, if the sharding structure stays fixed, malicious attackers can still overtake a
shard by corrupting the validators in that shard. There are three models of attackers:

1. Static Round-Adaptive: where attackers can only corrupt a subset of nodes at a
predetermined stage. Elastico assumes attackers can only corrupt nodes at the beginning of
each epoch.

2. Slowly Adaptive: where attackers can corrupt a subset of nodes over time during the epoch.
3. Fully Adaptive: where attackers can corrupt a subset of nodes instantaneously and at any time

Intelchain assumes the slowly adaptive corruption model under which the attacker can corrupt a
constant number of nodes and it takes a certain amount of time. Omniledger assumes the same
corruption model and it prevents the attack by replacing validators in all shards every epoch. This
approach has two major problems. The first is the high cost of bootstrapping at every epoch. The second
is the security concern when all nodes are being replaced during the consensus.

Intelchain mitigates these problems by adopting the Cuckoo-rule based resharding mechanism. After
the end of an epoch, the validators who withdrew their stake will be evicted from the network, while
those who keep their stakes stay. The new validators who staked during this epoch get new
voting shares. These voting shares will be randomly assigned to the shards who have more than the
median of the total voting shares. Next, a constant number of the voting shares from
all shards will be randomly re-distributed to the other half of the shards who have less than the
median of total voting shares. It’s proven in that this resharding scheme can keep the voting shares in all
shards balanced while fulfilling the security requirement.

10

3.5 Fast State Synchronization

The first block of an epoch contains a hash link to the first block of last epoch. This allows fast state
synchronization of new nodes where they can rely only on the blocks in grey to quickly verify the current

state.

When validators join a new shard, they will need to quickly synchronize to the current state of the shard
in order to validate new transactions. The traditional procedure of downloading the blockchain
history and reconstructing the current state is too slow for resharding to be possible (it takes days to fully
synchronize the Ethereum blockchain history). Fortunately, the current state is orders of magnitude
smaller than the whole blockchain history. Downloading the current state within the time window of an
epoch is feasible compared to downloading the whole history.

In Intelchain, new validators joining a shard first download the current state trie of that shard so they
can start validating transactions quickly. To ensure the current state downloaded is valid, the new
node needs to do proper verification. Instead of downloading the whole blockchain history and
replaying all the transactions to validate the current state, the new node downloads historical block
headers and validates the headers by checking their signatures. As long as there is a cryptographic
trace (e.g. hash pointers and signatures) from the current state back to the genesis block, the state is
valid. Nonetheless, signature verification is not computationally free and it takes a significant amount of
time to verify all the signatures starting from the genesis block. To mitigate this problem, the first block
of each epoch will include an additional hash pointer to the first block of the last epoch. This way, the
new node can jump across the blocks within an epoch when tracing hash pointers to genesis block.
This will significantly speed up the verification of the current blockchain state.

To further optimize the state synchronization process, we will make the blockchain state itself as small
as possible. One observation from the Ethereum blockchain state is that a lot of accounts are empty and
wasting the precious space of blockchain state. In Ethereum, the empty accounts with a specific nonce
cannot be deleted because of potential replay attacks where old transactions are re-submitted on the
deleted account. Intelchain will adopt a different model of avoiding replay attacks by letting the
transactions specify the hash of the current block: a transaction is only valid before a certain number (e.g.
100) of blocks following the block of the specified hash. This way, the old accounts can be safely deleted and
the blockchain state can be kept slim.

11

4. Shard Chain and Beacon Chain

4.1 Shard Chain
A shard chain is a blockchain that processes and validates its own transactions and stores its own state. A
shard only processes transactions that is relevant to itself. Although a shard chain is relatively
independent, it will communicate with other shard chains through cross-shard
communication.

Cross-shard Communication
Cross-shard communication is a key component of any sharding-based blockchain. Cross-shard
capability breaks the barrier between shards and extends the utility of a single shard beyond itself. Overall,
there are three categories of cross-shard communication:

1. Main-chain-driven: Projects like Zilliqa rely on the main chain to achieve transactions across
shards.

2. Client-driven: Omniledger proposed a client-driven cross-shard transaction mechanism where
the messages between shards are collected and sent to shards by clients. This adds an extra burden
to the client that is not desirable for an adhoc light client.

3. Shard-driven: RapidChain proposed that the messages between shards are directly sent by the
nodes in the shard without external help.

Intelchain adopts the shard-driven approach for its simplicity and the absence of burden on clients. We
believe the benefits of shard-driven communication outweighs its drawbacks. The cost on the
overall network for shard-driven communication can be considerable because every cross-shard
message is a network-level broadcast, which incurs a O(N) network cost. To solve this problem,
Intelchain uses the Kademlia routing protocol to reduce the communication complexity to
O(log(N)) . In addition, the data being communicated will be encoded with erasure code to ensure the
robustness of cross-shard communication.

4.2 Beacon Chain
The Intelchain beacon chain is a special blockchain that serves additional purposes compared to the
shard chains. In effect, the beacon chain is also a shard. Besides processing transactions, like other shard
chains do, the beacon chain is in charge of two additional key functionalities: generating the
random number and accepting stakes, which means that the beacon chain is the chain where stakers
deposit their tokens to become validators.

12

The validators for the beacon chain are determined similarly as the other shard chains are. During the
sharding assignment, the voting shares are randomly divided into NumShard + b buckets, where the
extra b buckets are for the beacon chain.

Hash Link from Shard Chain

Hash link from beacon chain block to shard chain block.

The beacon chain helps strengthen the security and consistency of the shard chains’ states by including
the block header from each shard chain. Specifically, after a new block is committed to a shard chain, its
block header will be sent (via Kademlia-based inter-shard communication) to the beacon chain. The
beacon chain checks the validity of the block header by:

1. The hash of its previous block, which must have already been committed in
the beacon chain;

2. The signers of the block’s multi-signature, which must be the correct validators for
that shard.

The committed block headers at the beacon chain will then be broadcasted to the whole network. Each
shard will keep a chain of valid block headers for all other shards, which will be used to check
the validity of transactions from other shards (i.e. simple payment verification). Adding the shard
chains’ block headers into the beacon chain serves two main purposes:

1. Increases the difficulty of attacking a single shard.
Attackers have to corrupt both the shard chain and beacon chain in order to convince others
that an alternative block in the shard chain is valid.

2. Reduce the network cost of broadcasting the block headers among shards.
There will be a O(N 2) network communication if we let each shard broadcast its headers
separately. With the beacon chain as a central relay, the complexity is reduced to O(N) .

13

5. Blockchain State Sharding
Unlike other state-sharding blockchains that adopted UTXO (Unspent Transaction Output) data
model, Intelchain's state sharding is applied on account-based data model. Each shard chain contains its
own account state, and all the tokens in existence are spread among all the shard.

We treat the user account and the smart contract account differently in sharding. An user account can
have multiple balances at different shards (e.g. 100 tokens at Shard A and 50 tokens at Shard B). A user
account can move its balance between shards by issuing a cross-shard transaction. A smart contract
account is limited to the specific shard where the contract was created. However, for a decentralized
application that requires more throughput than a single shard can handle, the
Dapp (Decentralized Application) developer can instantiate multiple instances of the same smart
contract in different shards and let each instance handle a subset of the incoming traffic. Note that the
different instances of the same smart contract do not share the same state, but they can talk to each other
via cross-shard communication.

6. Networking
Previous research has pointed out that network capacity is one of the major bottlenecks for blockchain
systems. In order to increase performance, Intelchain focuses on improving the efficiency of
network utilization. Intelchain also proposes a number of improvements to deal with real-world
networking scenarios.

6.1 Kademlia-based Routing
Inspired by RapidChain , we will adopt Kademlia as the routing mechanism for cross-shard messages.
Each node in the Intelchain's network maintains a routing table that contains nodes from different
shards. The distance between shards is defined as the XOR distance of the shard IDs. When a message
from shard A needs to be sent to shard B, the nodes in shard A will look at the routing table and send
the message to the nodes with the closest shard ID. With Kademlia-based routing, a message
only travels across O(logN) nodes before it reaches the destination shard. Compared to normal gossip
broadcasting, which requires a O(N) network complexity, the Kademlia routing mechanism can
significantly reduce the overall network load in a sharded blockchain.

14

6.2 Efficient Broadcasting with Erasure Code

Comparison between normal gossip broadcast with gossip broadcast with erasure code.

Broadcast is a frequent network action in any blockchain system built on P2P (Peer-to-Peer)
network overlay. Specifically in our consensus protocol, there are three scenarios where
broadcasting is needed:

1. A newly proposed block needs to be broadcasted by the leader to all validators.
2. A newly generated master chain block needs to be broadcasted to the whole network.
3. The cross shard communication requires the broadcast of a message between shards.

In a normal P2P broadcasting, the original sender needs to send a copy of the message to each of
its neighbors. This will incur O(d * M) network load on the sender, where d is the average number of

neighbors of the sender and M is the message size. Instead, in Intelchain a sender first encodes the
message with erasure code and then send chunks of the encoded message to each
neighbor. This reduces the load on the sender to O(M + e) where e is the size of erasure code and it is
usually smaller than the size of the original message M . Therefore, Intelchain's network broadcasting
mechanism significantly lowers the network load of the broadcast sender. In addition, Intelchain proposes
to improve IDA’s robustness by replacing the original Reed-Solomon erasure code with RaptorQ
fountain code so that the broadcaster can always send more erasure codes to further ensure the data is
eventually received.

6.3 FEC-based Unicast
Traditional reliable transports such as TCP relies upon retransmission and ACK-based signaling
in order to deal with lost packets. This is known to introduce latency spikes proportional to the
round-trip time between the sender and receiver. Also, window-based congestion control—such
as Reno, NewReno, and CUBIC in use by most TCP implementations—are all

15

additive increase/multiplicative decrease (AIMD) algorithms, whose bandwidth is known to be
severely impacted by transient packet losses.

Intelchain uses the RaptorQ fountain code to combat these two problems. Each message is encoded
into symbols, and symbols are sent over the wire until the receiver acknowledges successful
decoding of the message using the symbols that it received. Unlike using fixed-rate codes such as
Reed–Solomon where the transmission fails once the symbols have been exhausted, fountain code
enables infinite, just-in-time generation and use of encoding symbols.

6.4 Support for Home Nodes
P2P nodes on a typical residential network pose a major, distinctively unique problem: They cannot be
reached from the outside unless mediated by their residential internet router, which employs a
technique called network address translation (NAT). Support for inbound traffic by these routers vary,
and different approaches have been developed to work around different types of routers. In
particular, routers implementing symmetric NAT cannot easily be worked around unless explicitly
configured to support other hole-punching mechanisms such as Internet Gateway Device Protocol
(IGDP).

Intelchain's P2P layer tries to detect the NAT mechanism behind which a node operates and employs
the right workaround mechanism, such as STUN, TURN, IGDP, etc. In particular, Intelchain
implements the overall detection and mitigation protocol named ICE (Interactive Connectivity
Establishment).

6.5 Support for Locator Mobility
Nodes may change their IP addresses, with some type of nodes more so than others. One such example
is a laptop, which may frequently hop between different Wi-Fi networks, with its IP address
changing each time. When an IP address of a node changes, all existing transport connections that
use the IP address as a local or remote endpoint are interrupted, and applications directly using such
transport connections need to re-establish connections using the new IP address in order to continue.
Such a connection handover is hard to implement correctly with minimal application-layer service
interruption. Also, handling connection handover often complicates application-layer protocols
(such as base consensus protocols).

Intelchain's network layer, in order to solve this problem, introduces a clean separation between node
identity (cryptographic key pair possessed by the node) and node locators
(network/transport-layer locator where the node can be reached) using the industry-standard Host
Identity Protocol Version 2 (HIPv2). HIPv2 lets locators of a node change over time while keeping the
node identity, by providing mechanisms for locator discovery, node-to-node security association,
and tunneling of upper-layer traffic associated with local/remote node identity as endpoints.

16

7. Incentive Model

7.1 Consensus Rewards
After the successful commitment of a block, a protocol-defined number of new tokens will be
rewarded to all validators who signed the block in proportion to their voting shares. The
transactions fees are rewarded to validators similarly.

7.2 Stake Slashing
For any misbehaviors detected by the network, a certain amount of staked tokens will be slashed. For
example, if a leader failed to finish the consensus process and triggered the leader change
process, P vote staked tokens will be slashed. If validators are proven to sign a dishonest block, all of their
stake under the same shard will be slashed. This severe punishment is meant to strongly discourage any
dishonest behavior and make the network as secure as possible. A proof of misbehavior can be two
signed blocks that conflict with each other. Any validator can submit a transaction to prove the
misbehavior of other validator and if verified, the slashed token will be rewarded to the prover(s).

7.3 Stake withdrawal

Long-range Attacks
Proof-of-stake blockchains, unlike proof-of-work blockchains, tend to suffer from long-range attacks
. These are attacks that leverage the fact that proofs are based on signatures rather than on resource-
intensive tasks. In a long-range attack, the private keys of honest validators are stolen long after they
have been used, and the attacker is able to create a forked blockchain by signing fake blocks with those
keys. When this happens, new validators joining the network have no way to distinguish between the
original, legitimate chain and the attacker’s simulated chain.

Long-range attacks happen in the following two scenarios. Private key can be compromised either by a
lack of security on validators, or more commonly, by the fact, after a validator withdraw their token,
he could financially benefits if an attacker which would be looking to buy its private key. Also, by
design each set of validators is trusted to approve the block of transactions that also determines the next
set of validators. After enough private key (i.e. those that collectively hold

2more than 3 voting shares in a shard) has been compromised, an attacker has total control on
who the subsequent validators is.

17

Long-range Defense: Resonant Quorums
Proof-of-work blockchain protects against the above attacks by giving honest validators an
objective method of fork choice. In a proof-of-work blockchain, the fork choice to select the canonical
chain is the accumulated amount of work done in terms of hashes computed.

In a proof-of-stake blockchain, the only objective measure that can be used to select between forks is
the total weighting of signatures used to approve each block. If we use these weighted signatures to
compare two different blocks, we come to the following equation to determine when a chain may be
forked:

Safety = “Block approval key weight” - “Compromised key weight”

The “Block approval key weight” means the voting power of the keys that signed on the block. If, by
stake weight, more private keys are compromised than were used to approve of a block, then the block
can be forked. Until then, validators will always prefer the original, legitimate version of the block.

Intelchain maximizes the safety of each block in its proof-of-stake blockchain by maximizing this
equation. It is infeasible to disincentivize leaking private keys in the long term. Intelchain instead
incentivizes validators to maximize the approval weight of each block after a quorum has been
achieved. This is done by requiring validators to sign each quorum-approved block before allowing those
validators to withdraw their stake. These new additional signatures only need to exist within the
blockchain, and they do not need to be generated at consensus time for each block. Because of this, the
new signatures can be added to subsequent blocks when validators decide to withdraw their stake, and so
they may freely improve the safety of the chain without impacting its liveness.

8. Future Research

8.1 Fraud Proofs
The capability of proving the misbehavior of validators is important for a light client to trust the
block data they received. In the case of cross-shard communication, each shard is a light client of other
shards. Ensuring that messages sent between shards are trustable is crucial for inter-shard data
consistency. We are actively researching the topic of data availability and fraud proofs to securitize our
protocol.

8.2 Stateless Validators
In a high throughput blockchain, the size of the blockchain data will grow faster than existing chains,
which is a major problem for new validators to sync up quickly. This makes the resharding process
problematic because if new validators can’t sync up in time, then the quorum of validators may not be
reached for a new block to be approved, and even if the quorum is met, the security of

18

the protocol would be reduced. State block pruning is one mitigation to the problem, but it’s not
optimal since the state itself can grow large. We are actively looking into enabling stateless client where
validators doesn’t have to sync up the full state to validate transactions.

References
[1] J.R. Douceur, The Sybil attack, in: 1st International Workshop on Peer-to-Peer Systems (IPTPS 02),
2002.
[2] Al-Bassam, M., Sonnino, A., & Buterin, V. (2018). Fraud Proofs: Maximising Light Client Security and
Scaling Blockchains with Dishonest Majorities. CoRR, abs/1809.09044.
[3] Vasin, P. (2014) Blackcoin’s Proof-of-Stake Protocol v2,
https://blackcoin.co/blackcoin-pos-protocolv2-whitepaper.pdf
[4] A. Kiayias, I. Konstantinou, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure
proof-of-stake blockchain protocol. Cryptology ePrint Archive, Report 2016/889, 2016. http://
eprint.iacr.org/.

[5] P. Daian, R. Pass and E. Shi, Snow White: Robustly reconfigurable consensus and applications to
provably secure proofs of stake, Cryptology ePrint Archive, Report 2016/919, 2017.
[6] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation. https://
eprint.iacr.org/2017/913.pdf.

[7] The Zilliqa Team. The zilliqa technical whitepaper. https://docs.zilliqa.com/whitepaper.pdf, August
2017.
[8] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. Available at https://
bitcoin.org/ bitcoin.pdf.
[9] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance. In Proceedings of the 3rd
Symposium on Operating Systems Design and Implementation (OSDI ’99), New Orleans, Louisiana,
February 1999.
[10] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford. Enhancing Bitcoin
Security and Performance with Strong Consistency via Collective Signing. In Proceedings of the 25th
USENIX Conference on Security Symposium, 2016.

19

https://blackcoin.co/blackcoin-pos-protocolv2-whitepaper.pdf
http://eprint.iacr.org/
https://eprint.iacr.org/2017/913.pdf

20

21

